问题

数论 >> 一般数论 >> 初等数论
Questions in category: 初等数论 (Elementary Number Theory).

证明 $8\overbrace{33\cdots3}^{2n}=1\overbrace{66\cdots 67}^{n}\times 4\overbrace{99\cdots 9}^{n}$.

Posted by haifeng on 2019-09-11 08:32:22 last update 2019-09-11 09:42:23 | Answers (0) | 收藏


我们都知道 $\frac{5}{6}=0.833333\cdots$, $\frac{5}{3}=1.666666\cdots$

\[
\dfrac{\frac{5}{6}}{\frac{3}{6}}=\frac{5}{3}\Rightarrow\ 0.833333\cdots=1.666666\cdots\times 0.5
\]

开元棋牌优惠现在如果两边都取小数点后有限位(比如 $n$ 位), 固然有 $0.833\cdots 3=1.66\cdots 6\times 0.5$,? 但有没有这样一种情况, 当 $1.66\cdots 66$ 增加 $0.00\cdots 01$, 而 $0.5$ 减少 $0.00\cdots 01$. (这里小数点后是 $n$ 位), 仍有等式

\[
0.833\cdots 33=1.66\cdots 67\times 0.499\cdots 9
\]

事实上, 我们可以证明:

\[
8\overbrace{33\cdots3}^{2n}=1\overbrace{66\cdots 67}^{n}\times 4\overbrace{99\cdots 9}^{n}
\]

?

?

[Hint] 使用归纳法即可证明.

?